∫xe^x/(e^x+1)^2dx

 我来答
教育小百科达人
2019-03-20 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:461万
展开全部

分部积分:

=-亅xd1/(1+e^x)

=-x/(1+e^x)+亅dx/(1+e^x)

=-x/(1+e^x)+

亅e^(-x)dx/(1+e^(-x))

=-x/(1+e^x)-ln(1+e^(-x))+C

分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。

扩展资料:

如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。如同上面介绍的,对于只有一个变量x的实值函数f,f在闭区间[a,b]上。

积分都满足一些基本的性质。在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

参考资料来源:百度百科——积分

茹翊神谕者

2021-11-25 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25144

向TA提问 私信TA
展开全部

简单计算一下即可,答案如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
第10号当铺
2018-01-01 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:71%
帮助的人:4240万
展开全部
分部积分:
=-亅xd1/(1+e^x)
=-x/(1+e^x)+亅dx/(1+e^x)
=-x/(1+e^x)+
亅e^(-x)dx/(1+e^(-x))
=-x/(1+e^x)-ln(1+e^(-x))+C
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
s1104800927s
2020-03-05
知道答主
回答量:1
采纳率:0%
帮助的人:628
展开全部
=-∫xd(1/1+e^x)
=-x/(1+e^x)+∫(1/1+e^x)dx
=-x/(1+e^x)+
∫(1+e^x-e^x/1+e^x)dx
=-x/(1+e^x)+∫[1-(e^x/1+e^x)]dx
=-x/(1+e^x)+∫dx-∫e^x/(1+e^x)dx
=-x/(1+e^x)+x-ln|1+e^x|
=xe^x/(1+e^x)-ln|1+e^x|+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式