2个回答
展开全部
(1)
a1=3
a(n+1) = an + 1/[n(n+1)]
a(n+1) -an = 1/n - 1/(n+1)
an - a(n-1) = 1/(n-1) - 1/n
an - a1 = [1/(n-1) - 1/n] +[1/(n-2) - 1/(n-1)] +...+[1/(2-1) - 1/2]
a1 -3 = 1 - 1/n
a1 = 4 - 1/n
(2)
a1 =1
a(n+1) =2^n .an
a(n+1)/an = 2^n
an/a(n-1) = 2^(n-1)
an/a1 = 2^[1+2+...+(n-1) ]
an/1 = 2^[n(n-1)/2]
an =2^[n(n-1)/2]
a1=3
a(n+1) = an + 1/[n(n+1)]
a(n+1) -an = 1/n - 1/(n+1)
an - a(n-1) = 1/(n-1) - 1/n
an - a1 = [1/(n-1) - 1/n] +[1/(n-2) - 1/(n-1)] +...+[1/(2-1) - 1/2]
a1 -3 = 1 - 1/n
a1 = 4 - 1/n
(2)
a1 =1
a(n+1) =2^n .an
a(n+1)/an = 2^n
an/a(n-1) = 2^(n-1)
an/a1 = 2^[1+2+...+(n-1) ]
an/1 = 2^[n(n-1)/2]
an =2^[n(n-1)/2]
追问
麻烦能用图片形式吗,符号看不懂
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |