1个回答
展开全部
1x2+2x3+3x4+······+n(n+1)
=1x(1+1)+2x(2+1)+3x(3+1)+········+n(n+1)
=1^2+1+2^2+2+3^2+3+·······+n^2+n
=(1^2+2^2+3^2+·········+n^2)+(1+2+3+········+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
=1x(1+1)+2x(2+1)+3x(3+1)+········+n(n+1)
=1^2+1+2^2+2+3^2+3+·······+n^2+n
=(1^2+2^2+3^2+·········+n^2)+(1+2+3+········+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询