素数,质数和合数的定义是什么?
展开全部
质数又称素数。是一个大于1的自然数,除了因数只有1和它本身。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数和合数相对。
扩展资料:
质数的性质:
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
合数性质:
1.所有大于2的偶数都是合数。
2.所有大于5的奇数中,个位为5的都是合数。
3.除0以外,所有个位为0的自然数都是合数。
4.所有个位为4,6,8的自然数都是合数。
5.最小的(偶)合数为4,最小的奇合数为9。
6.每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
参考资料:质数-百度百科
展开全部
质数又称素数。是一个大于1的自然数,除了因数只有1和它本身。
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数和合数相对。
扩展资料:
质数的性质:
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
合数性质:
1.所有大于2的偶数都是合数。
2.所有大于5的奇数中,个位为5的都是合数。
3.除0以外,所有个位为0的自然数都是合数。
4.所有个位为4,6,8的自然数都是合数。
5.最小的(偶)合数为4,最小的奇合数为9。
6.每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
质数和合数相对。
扩展资料:
质数的性质:
1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。
2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。
合数性质:
1.所有大于2的偶数都是合数。
2.所有大于5的奇数中,个位为5的都是合数。
3.除0以外,所有个位为0的自然数都是合数。
4.所有个位为4,6,8的自然数都是合数。
5.最小的(偶)合数为4,最小的奇合数为9。
6.每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
素数,也叫质数。一个大于1的正整数,如果除了1和它本身以外,不能被其他正整数整除,就叫素数。如2,3,5,7,11,13,17…。
合数,就是可以表示为两个或以上素数的乘积,例如,4=2*2,30=2*3*5,等等。
合数,就是可以表示为两个或以上素数的乘积,例如,4=2*2,30=2*3*5,等等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-07-09
展开全部
素数就是质数,表示只能被1和自身整除、且大于1的正整数。
合数是除了能被1和自身,还能被其他正整数整除的自然数。
合数是除了能被1和自身,还能被其他正整数整除的自然数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询