怎样求两个数的“最大公因数”和“最小公倍数”?
先把两个数的
写出来,
最小公倍数等于它们所有的
的乘积(如果有几个
相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
就是如果出现重复的质因数,取最多的那组,不重复的质因数都要乘上去.
比如求36和15的最小公倍数
36=2×2×3×3
15=3×5
不同的质因数是2、3、5。3这个质因数在36中比较多,有两个,所以乘两次;2是36的质因数,出现了两次, 要乘上去, 5只在15的因数里出现, 也要乘上去,
所以36和15的最小公倍数等于2×2×3×3×5=180
再如求12、18、36的最小公倍数,
12=2×2×3
18=2×3×3
36=2×2×3×3
所以, 12、18、36的最小公倍数等于2×2×3×3=36
方法二:分解质因数法。分别把两个数分解质因数,然后相同的质因数取一个,独有的质因数都取出来,把它们相乘,积就是最小公倍数。
方法三:短除法。 把两个灵长公有的质因数按照从小到大的顺序,依次作为除数连续去除这两个数,一直除到所得的商是互质数为止,然后把所有的除数和商连乘起来,就是这两个数的最小公倍数。
先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2,3,5。3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
最小公倍数等于2*3*3*5=90
又如计算36和270的最小公倍数
36=2*2*3*3
270=2*3*3*3*5
不同的质因数是5。2这个质因数在36中比较多,为两个,所以乘两次;3这个质因数在270个比较多,为三个,所以乘三次。
最小公倍数等于2*2*3*3*3*5=540
20和40的最小公倍数是40(2)公式法由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。[5
质因数分解法:就是把一个合数分解成几个质数相乘的形式。
48和54
48=2*2*2*2*3
54=2*3*3*3
因此,48和54的最大公约数是:2*3=6.
短除法是求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数.
辗转相除法是用来求最大公约数的.给出两个正整数a和b,用b除a得商a0,余数r,写成式子 a=a0b+r,0≤rr>r1>r2>…逐步小下来,而又都是正整数,因此经过有限步骤后一定可以找到a、b的最大公约数d(它可能是1).这就是有名的辗转相除法,在外国称为欧几里得算法.