大一高数求解
1个回答
展开全部
∫(sinx+cosx)dx/[(cosx)^2(sinx-cosx)]
=∫-2(1+sin2x)dx/[(1+cos2x)(cos2x)]
=-2∫dx/[(1+cos2x)cos2x]-2∫sin2xdx/[(cos2x)(1+cos2x)]
∫sin2xdx/[(1+cos2x)cos2x]
=-∫dcos2x/cos2x+∫dcos2x/(1+cos2x)
=ln[(1+cos2x)/cos2x]+C
∫dx/[(1+cos2x)(cos2x)]
=∫dx/cos2x-∫dx/(1+cos2x)
=∫dx/cos2x-(1/2)∫dx/(cosx)^2
=(1/2)∫cos2xd(2x)/[(1+sin2x)(1-sin2x)]-(1/2)tanx
=(1/2)ln[(1+sin2x)/(1-sin2x)]-(1/2)tanx
=∫-2(1+sin2x)dx/[(1+cos2x)(cos2x)]
=-2∫dx/[(1+cos2x)cos2x]-2∫sin2xdx/[(cos2x)(1+cos2x)]
∫sin2xdx/[(1+cos2x)cos2x]
=-∫dcos2x/cos2x+∫dcos2x/(1+cos2x)
=ln[(1+cos2x)/cos2x]+C
∫dx/[(1+cos2x)(cos2x)]
=∫dx/cos2x-∫dx/(1+cos2x)
=∫dx/cos2x-(1/2)∫dx/(cosx)^2
=(1/2)∫cos2xd(2x)/[(1+sin2x)(1-sin2x)]-(1/2)tanx
=(1/2)ln[(1+sin2x)/(1-sin2x)]-(1/2)tanx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询