令x=3sect,则dx=3sect*tantdt.带入原式。
=∫1/(3tant)*3sect*tantdt
=∫sectdt
=∫[cost /(cost)^2]dt
=∫ 1/[1-(sint)^2]d(sint)
=(1/2)∫[1/(1-sint)+1/(1+sint)]d(sint)
=(1/2)[-ln|1-sint|+ln|1+sint|]+C
=(1/2)ln|(1+sinx)/(1-sinx)|+C
=(1/2)ln|(1+sinx)^2 / (1-sinx)(1+sinx)|+C
=(1/2)ln|(1+sinx)^2 / (cosx)^2|+C
=ln|(1+sinx)/ (cosx)|+C
=ln|secx+tanx| +C,C为常数