2018-12-13 · 知道合伙人教育行家
huqian793
知道合伙人教育行家
向TA提问 私信TA
知道合伙人教育行家
采纳数:13569
获赞数:70182
2011年高教社杯全国大学生建模国家二等奖; 2012年大学生创新项目校一等奖并获优秀大学生奖; 过英语四六级
向TA提问 私信TA
关注
展开全部
提供我的一种思路,如下:
不妨设|x|>1(这并不影响x趋向于无穷)
对于任意的正数M,要使得 | (1+x²)/x |>M,
因为 | (1+x²)/x |>=|x|-|1/x|>=|x|-1,所以只要|x|-1>M即可
令X=M+1,则当|x|>X 时就有
| (1+x²)/x |>M,
则由无穷大量的定义可知:
lim(x->无穷)(1+x²)/x=无穷.
不妨设|x|>1(这并不影响x趋向于无穷)
对于任意的正数M,要使得 | (1+x²)/x |>M,
因为 | (1+x²)/x |>=|x|-|1/x|>=|x|-1,所以只要|x|-1>M即可
令X=M+1,则当|x|>X 时就有
| (1+x²)/x |>M,
则由无穷大量的定义可知:
lim(x->无穷)(1+x²)/x=无穷.
追答
如对您有帮助,望采纳,谢谢!
展开全部
证题的步骤基本为:
任意给定ε>0,要使|f(x)-A|<ε,(通过解这个不等式,使不等式变为δ1(ε)<x-x0<δ2(ε)为了方便,可让ε值适当减少),取不等式两端的绝对值较小者为δ(ε),于是
对于任意给定的ε>0,都找到δ>0,使当0<|x-x0|<δ时,有|f(x)-A|<ε . 即当x趋近于x0时,函数f(x)有极限A
例如证明f(x)=lnx在x趋于e时,有极限1
证明:任意给定ε>0,要使|lnx-1|<ε,只须-ε<lnx-1<ε,1-ε<lnx<1+ε,e^(1-ε)<x<e^(1+ε), ∴e^(1-ε)-e<x-e<e^(1+ε)-e,取δ(ε)=min(e-e^(1-ε),e^(1+ε)-e)min后面两数是不等式两端的值,但左边的是不等式左端的负值要取绝对值,这两正数取较小的为δ,于是对于任意给定的ε>0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1
说明一下:1)取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。 2)用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求
任意给定ε>0,要使|f(x)-A|<ε,(通过解这个不等式,使不等式变为δ1(ε)<x-x0<δ2(ε)为了方便,可让ε值适当减少),取不等式两端的绝对值较小者为δ(ε),于是
对于任意给定的ε>0,都找到δ>0,使当0<|x-x0|<δ时,有|f(x)-A|<ε . 即当x趋近于x0时,函数f(x)有极限A
例如证明f(x)=lnx在x趋于e时,有极限1
证明:任意给定ε>0,要使|lnx-1|<ε,只须-ε<lnx-1<ε,1-ε<lnx<1+ε,e^(1-ε)<x<e^(1+ε), ∴e^(1-ε)-e<x-e<e^(1+ε)-e,取δ(ε)=min(e-e^(1-ε),e^(1+ε)-e)min后面两数是不等式两端的值,但左边的是不等式左端的负值要取绝对值,这两正数取较小的为δ,于是对于任意给定的ε>0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1
说明一下:1)取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。 2)用ε-δ语言证明函数的极限较难,通常对综合大学数学等少数专业才要求
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |