以y1=e∧2x,y2=xe∧2x 为特解的二阶常系数线性齐次微分方程为?

 我来答
帐号已注销
2021-07-22 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:167万
展开全部

答案:y''-4y'+4y=0。

由解可知微分方程的特征根为:r1=r2=2

所以特征方程为(r-2)^2=0r^2-4r+4=0

所以二阶常系数线性齐次微分方程是:y''-4y'+4y=0。

约束条件

微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。

若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。

tllau38
高粉答主

2019-12-06 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部

p=2 ( 重根)

The aux. equation

(p-2)^2 =0

p^2 -4p +4 =0

微分方程

y''-4y'+4y =0

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
十全小秀才

2019-12-26 · 三人行必有我师焉!!
十全小秀才
采纳数:2251 获赞数:9387

向TA提问 私信TA
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式