遗传算法的优缺点?

 我来答
白雪忘冬
高粉答主

推荐于2020-03-01 · 在我的情感世界留下一方美好的文字
白雪忘冬
采纳数:1007 获赞数:376629

向TA提问 私信TA
展开全部

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

扩展资料

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options= gaoptimset ('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

参考资料来源:百度百科-遗传算法

lilipat
高粉答主

2018-11-08 · 每个回答都超有意思的
知道大有可为答主
回答量:3万
采纳率:94%
帮助的人:5058万
展开全部
遗传算法的优缺点
遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异。
数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现"死循环"现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。算法中称遗传的生物体为个体(individual),个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代(new generation)。
遗传算法计算程序的流程可以表示如下:
第一步 准备工作
(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。
(3)确定适应值函数f(x)。f(x)应为正值。
第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步 对每一染色体(串)计算其适应值fi,同时计算群体的总适应值 。
第四步 选择
计算每一串的选择概率Pi=fi/F及累计概率。选择一般通过模拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。旋转M次即可选出M个串来。在计算机上实现的步骤是:产生[0,1]间随机数r,若r<q1,则第一串v1入选,否则选v2,使满足qi-1<r<qi(2≤i≤m)。可见适应值大的入选概率大。
第五步 交叉
(1)对每串产生[0,1]间随机数,若r>pc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。
(2) 对每一对,产生[1,m]间的随机数以确定交叉的位置。
第六步 变异
如变异概率为Pm,则可能变异的位数的期望值为Pm ×m×M,每一位以等概率变异。具体为对每一串中的每一位产生[0,1]间的随机数r,若r<Pm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。
如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。
由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大,使选择起到"择优汰劣"的作用。交叉使染色体交换信息,结合选择规则,使优秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到产生确实有实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向的,它所使用的"按概率随机选择"方法是在有方向的搜索方法中的一种工具。正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的局部最小陷阱。

遗传算法与传统的优化方法(枚举,启发式等)相比较,以生物进化为原型,具有很好的收敛性,在计算精度要求时,计算时间少,鲁棒性高等都是它的优点。

遗传算法的优点:
1. 与问题领域无关切快速随机的搜索能力。
2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,robust.
3. 搜索使用评价函数启发,过程简单
4. 使用概率机制进行迭代,具有随机性。
5. 具有可扩展性,容易与其他算法结合。

遗传算法的缺点:
1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,
2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.
3、没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。
4、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。
5、算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法的一个研究热点方向。
在现在的工作中,遗传算法(1972年提出)已经不能很好的解决大规模计算量问题,它很容易陷入“早熟”。常用混合遗传算法,合作型协同进化算法等来替代,这些算法都是GA的衍生算法。
遗传算法具有良好的全局搜索能力,可以快速地将解空间中的全体解搜索出,而不会陷入局部最优解的快速下降陷阱;并且利用它的内在并行性,可以方便地进行分布式计算,加快求解速度。但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一直是遗传算法中较难解决的问题。
模拟退火算法虽具有摆脱局部最优解的能力,能够以随机搜索技术从概率的意义上找出目标函数的全局最小点。但是,由于模拟退火算法对整个搜索空间的状况了解不多,不便于使搜索过程进入最有希望的搜索区域,使得模拟退火算法的运算效率不高。模拟退火算法对参数(如初始温度)的依赖性较强,且进化速度慢。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2020-02-29
展开全部
1.在遗传编码时, 一般将瓦片的坐标作为基因进行实数编码, 染色体的第一个基因为起点坐标, 最后一个基因为终点坐标, 中间的基因为路径经过的每一个瓦片的坐标。在生成染色体时, 由起点出发, 随机选择当前结点的邻居节点中的可通过节点, 将其坐标加入染色体, 依此循环, 直到找到目标点为止, 生成了一条染色体。重复上述操作, 直到达到指定的种群规模。
2.神经网络的搭建,输入,隐藏与输出的设置。应用到遗传算法中,我们制定一个规则,什么样的坦克是好坦克:比如杀一个坦克+15,按存活时间+10,死亡后-25;这样判别优秀的坦克基因;然后遗传给下一代重新训练。
将遗传算法与宠物养成游戏相结合,不仅可以增加游戏可玩性,给玩家带来新鲜的游戏体验,丰富玩家渴求惊喜与刺激的游戏心理,又可以丰富遗传算法的应用领域与辐射面。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
田螺姑娘super
2020-12-23 · TA获得超过1069个赞
知道答主
回答量:1852
采纳率:0%
帮助的人:122万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
吟舞倾心
高粉答主

2020-03-20 · 醉心答题,欢迎关注
知道答主
回答量:3675
采纳率:10%
帮助的人:300万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式