求一道高数题13.

 我来答
wjl371116
2020-03-03 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67433

向TA提问 私信TA
展开全部
求微分方程 (1-x²)y''-xy'=0的一条积分曲线,使其在原点处与曲线y=arctanx相切;
解:令y'=dy/dx=p,则y''=(d/dx)(dy/dx)=dp/dx;代入原式:
(1-x²)(dp/dx)-xp=0; 分离变量得:dp/p=[x/(1-x²)]dx=(1/2)[1/1-x)-1/(1+x)]dx;
积分之得:lnp=(1/2)∫[1/(1-x)-1/(1+x)]dx=(1/2)[-ln∣1-x∣-ln∣1+x∣]=-(1/2)ln[c₁∣1-x²∣];
故p=dy/dx=1/√[c₁∣1-x²∣];
再次分离变量得:dy=dx/√[c₁∣1-x²∣];

积分之得: y=(1/√c₁)∫dx/√(1-x²)=(1/√c₁)arcsinx+c₂;
因为与曲线y=arctanx在原点相切,故有y(0)=c₂=0;
求因为(arctanx)'∣(x=0)=1/(1+x²)∣(x=0)=1,故有p=dy/dx=1/√[c₁∣1-x²∣]∣(x=0)=1/√c₁=1
∴c₁=1; 于是得满足初始条件的特解为:y=arcsinx;
stanchcorder6
2020-03-03 · TA获得超过3089个赞
知道大有可为答主
回答量:3925
采纳率:70%
帮助的人:904万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式