一阶线性微分方程通解公式
展开全部
公式应该是
∫e^(-p(x))dx
,这个积分是个不定积分,本身就包含了一个常数。
不用再写
∫e^(-p(x))dx
+
C
了。
正常情况下,微分方程方程都有边界条件
和/或
初始条件,
当你知道p(x)
的具体形式时,算这个不定积分,应该保留一个常数,而后用边界条件
和/或
初始条件来确定常数的值,得到完全确定的解。
∫e^(-p(x))dx
,这个积分是个不定积分,本身就包含了一个常数。
不用再写
∫e^(-p(x))dx
+
C
了。
正常情况下,微分方程方程都有边界条件
和/或
初始条件,
当你知道p(x)
的具体形式时,算这个不定积分,应该保留一个常数,而后用边界条件
和/或
初始条件来确定常数的值,得到完全确定的解。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、楼主问的问题是涉及积分因子的问题,而求积分因子的目的是在寻求全微分;
2、也就是说,在微分方程的左侧乘以一个积分因子,就使得左侧变成全微分形式。
3、如果在积分中加入积分因子,结果只是等于在积分因子前,乘上了一个e^c的常
数,这个常数对全微分没有丝毫贡献,也没有丝毫影响。所以,通常就省去了。
4、左侧乘上积分因子后,右侧同样乘以积分因子,因为左侧的导函数、原函数都
一次性地解决了,方程的右侧变成了一个单纯的积分问题,不再涉及导函数与原
函数的纠缠。
如有不明白之处,欢迎追问。
2、也就是说,在微分方程的左侧乘以一个积分因子,就使得左侧变成全微分形式。
3、如果在积分中加入积分因子,结果只是等于在积分因子前,乘上了一个e^c的常
数,这个常数对全微分没有丝毫贡献,也没有丝毫影响。所以,通常就省去了。
4、左侧乘上积分因子后,右侧同样乘以积分因子,因为左侧的导函数、原函数都
一次性地解决了,方程的右侧变成了一个单纯的积分问题,不再涉及导函数与原
函数的纠缠。
如有不明白之处,欢迎追问。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询