数学十字相乘法的公式是什么?
x²+(a+b)x+ab=(x+a)(x+b)
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数
具体步骤:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数
扩展资料:
原理:
运用了乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字相乘法能把二次三项式分解因式(不一定在整数范围内)。
对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式计算步骤:
⑴把二次项系数a分解成两个因数a1,a2的积a1·a2
⑵把常数项c分解成两个因数c1,c2的积c1·c2
⑶使a1c2+a2c1正好等于一次项的系数b
⑷结果:ax²+bx+c=(a1x+c1)(a2x+c2)
实质:二项式乘法的逆过程。
当首项系数不是1时,需注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
x²+(a+b)x+ab=(x+a)(x+b)
具体步骤:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
乘法的计算法则:
数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐。
凡是被乘数遇到989697等大数联运算时,期法为:被乘数后位按10补加补数,前位遇到9不动,前位遇到6、7、 8时,按9补加补数次数(均由下位补加补数次数),最后被乘数首位减补数一次。
例如:9798x 8679=85036842(8679的补数1321)算序:被乘数个位8的下位加2642,得979-82642。被乘数十位9不动。被乘数百位7的下位加2642,得9-8246842。被乘数的首位减1321,得85036842(乘积)。
十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
选我吧!!!!!!!!!!!!!!!
十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
参考:http://baike.baidu.com/link?url=d7S1p9rT9oi7dZ9I0jfP7rP-HXIMwAp3FF-fo3DC9TVrhtHJGbkuUw0q1xc0ah1h
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数
具体步骤:
十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数
广告 您可能关注的内容 |