求∫dx/根号下(x^2+a^2),(a>0)
展开全部
设x=atant,t=arctan(x/a),dx=a(sect)^2dt,x^2+a^2=a^2((tant)^2+1)=a^2(sect)^2
原式=∫(1/asect)×a(sect)^2dt
=∫sectdt
=ln|sect+tnat|
=ln|根号(x^2/a^2 + 1)+x/a|+C
原式=∫(1/asect)×a(sect)^2dt
=∫sectdt
=ln|sect+tnat|
=ln|根号(x^2/a^2 + 1)+x/a|+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询