fxy(x,y)如何求偏导

 我来答
栗飞索新之
2019-12-25 · TA获得超过3675个赞
知道大有可为答主
回答量:3105
采纳率:31%
帮助的人:182万
展开全部
先对x求偏导把y当常数
x当未知数求导得结果M
再对M求偏导把x当常数
y当未知数求导得结果N
最后求偏导的结果就是N
数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。偏导数在向量分析和微分几何中是很有用的。
扩展资料:
求法:
当函数
z=f(x,y)

(x0,y0)的两个偏导数
f'x(x0,y0)

f'y(x0,y0)都存在时,我们称
f(x,y)

(x0,y0)处可导。如果函数
f(x,y)
在域
D
的每一点均可导,那么称函数
f(x,y)
在域
D
可导。
此时,对应于域
D
的每一点
(x,y)
,必有一个对
x
(对
y
)的偏导数,因而在域
D
确定了一个新的二元函数,称为
f(x,y)

x
(对
y
)的偏导函数。简称偏导数。
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式