求 解三阶微分方程的数值方法
1个回答
展开全部
由卡尔丹公式:
x1=(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
x2=w(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w^2(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
x3=w^2(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
其中
w=(-1+i3^(1/2))/2,w^2=(-1-i3^(1/2))/2
由ax^3+bx^2+cx+d=0可知
上式除以a并设x=y-b/3a,转化成
y^3+py+1=0的形式,求出y1,y2,y3后有
x1=y1-b/3a,x2=y2-b/3a,x2=y1-b/3a
即得特征根
名词解释:
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
微分方程的应用十分广泛,可以解决许多与导数有关的问题[1]:p.1。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。
动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
x1=(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
x2=w(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w^2(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
x3=w^2(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)
其中
w=(-1+i3^(1/2))/2,w^2=(-1-i3^(1/2))/2
由ax^3+bx^2+cx+d=0可知
上式除以a并设x=y-b/3a,转化成
y^3+py+1=0的形式,求出y1,y2,y3后有
x1=y1-b/3a,x2=y2-b/3a,x2=y1-b/3a
即得特征根
名词解释:
微分方程指描述未知函数的导数与自变量之间的关系的方程。微分方程的解是一个符合方程的函数。而在初等数学的代数方程,其解是常数值。
微分方程的应用十分广泛,可以解决许多与导数有关的问题[1]:p.1。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。
数学领域对微分方程的研究着重在几个不同的面向,但大多数都是关心微分方程的解。只有少数简单的微分方程可以求得解析解。不过即使没有找到其解析解,仍然可以确认其解的部份性质。在无法求得解析解时,可以利用数值分析的方式,利用电脑来找到其数值解。
动力系统理论强调对于微分方程系统的量化分析,而许多数值方法可以计算微分方程的数值解,且有一定的准确度。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
夕资工业设备(上海)
2024-12-11 广告
2024-12-11 广告
夕资工业设备(上海)有限公司的工作人员指出,读数头315420-14是一种高精度的传感器,用于测量各种物理量,如压力、温度、位移等。该读数头具有高稳定性、高精度和高可靠性等特点,广泛应用于工业自动化、智能制造、能源等领域。读数头315420...
点击进入详情页
本回答由夕资工业设备(上海)提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询