高数曲面积分?

 我来答
crs0723
2020-06-18 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4500万
展开全部
因为∑关于xoy平面对称,所以
原式=2∫∫(∑') (x+y)dS,其中∑'是∑在xoy平面上方的部分
=2∫∫(D) (x+y)√[1+x^2/(a^2-x^2-y^2)+y^2/(a^2-x^2-y^2)]dxdy,其中D是∑'在xoy平面上的投影,即x^2+(y-a/2)^2=(a/2)^2
=2a∫∫(D) (x+y)/√(a^2-x^2-y^2)dxdy
因为D关于y轴对称,所以
原式=4a∫∫(D') y/√(a^2-x^2-y^2)dxdy,其中D'是D在y轴右侧的部分
=4a∫(0,a)dy∫(0,√(ay-y^2)) y/√(a^2-x^2-y^2)dx
=4a∫(0,a)ydy*arcsin[x/√(a^2-y^2)]|(0,√(ay-y^2))
=4a∫(0,a) yarcsin{√[y/(a+y)]}dy
=2a∫(0,a) arcsin{√[y/(a+y)]}d(y^2)
=2a*arcsin{√[y/(a+y)]}*y^2|(0,a)-2a*∫(0,a) {y^2/√[1-y/(a+y)]}*(1/2)*√[(a+y)/y]*a/(a+y)^2dy
=(π/2)*a^3-a√a*∫(0,a) y^(3/2)/(a+y)dy
令y=t^2,则dy=2tdt
原式=(π/2)*a^3-2a^(3/2)*∫(0,√a) t^4/(a+t^2)dt
=(π/2)*a^3-2a^(3/2)*∫(0,√a) [t^2-a+a^2/(a+t^2)]dt
=(π/2)*a^3-2a^(3/2)*[(1/3)*t^3-at+a^(3/2)*arctan(t/√a)]|(0,√a)
=(π/2)*a^3-2a^(3/2)*[(1/3)*a^(3/2)-a^(3/2)+a^(3/2)*(π/4)]
=(π/2)*a^3-(2/3)*a^3+2a^3-(π/2)*a^3
=(4/3)*a^3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式