运用罗比达法则进行极限运算的基本思路是什么?
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
应用条件:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
扩展资料:
洛必达法则使用的注意事项:
1、在着手求极限以前,首先要检查是否满足0比0 型或是无穷比无穷型构型,否则滥用洛必达法则会出错(其实无穷比无穷形式分子并不需要为无穷大,只需分母为无穷大即可)。
2、当不存在时(不包括无穷情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。比如利用泰式求解 。
3、若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
4、洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
参考资料来源:百度百科 -洛必达法则
求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
扩展资料
洛必达的著作尚盛行于18世纪的圆锥曲线的研究。他最重要的著作是《阐明曲线的无穷小于分析》(1696),这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。
在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:洛必达法则,就是求一个分式当分子和分母都趋于零时的极限的法则。后人误以为是他的发明,故洛必达法则之名沿用至今。洛必达还写作过几何,代数及力学方面的文章。
他亦计划写作一本关于积分学的教科书,但由于他过早去世,因此这本积分学教科书未能完成。而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。
参考资料来源:百度百科-洛必达
参考资料来源:百度百科-洛必达法则
0/0或者∞/∞型的式子
然后对分子分母同时求导
直到得到极限值为常数
或者趋于无穷大等等