两个曲线相切怎么求
已知两曲线方程,求与这两条曲线均相切的直线方程比如已知Y=x^2,Y=-(x-2)^2;求与这两曲线均相切的直线方程。方法最重要:答按:y=0或y=4*x-4...
已知两曲线方程,求与这两条曲线均相切的直线方程
比如已知Y=x^2,Y=-(x-2)^2;
求与这两曲线均相切的直线方程。
方法最重要:
答按:y=0或y=4*x-4 展开
比如已知Y=x^2,Y=-(x-2)^2;
求与这两曲线均相切的直线方程。
方法最重要:
答按:y=0或y=4*x-4 展开
展开全部
初中方法:
设与y=x^2,y=-(x-2)^2这两曲线均相切的直线方程为y=kx+b
则x^2=kx+b,-(x-2)^2=kx+b
即x^2-kx-b=0,x^2+(k-4)x+(b+4)=0均有两个相等的实数根
所以△1=k^2+4b=0 ,且△2=(k-4)^2-4(b+4)=0
即k^2+4b=0,且k^2-8k-4b=0
所以2k^2-8k=0
2k(k-4)=0
所以k=0或k=4
所以k=0时,b=0 或k=4,时b=-4
所以与这两曲线均相切的直线方程为y=0,或y=4x-4
高中方法:
设f(x)=x^2, g(x)=-(x-2)^2
f'(x)=2x, g'(x)=-2x+4
设两切点为A(a,a^2), B[b,-(b-2)^2]
则AB的斜率等于两个切点的导数,
即kAB=f'(a)=g'(b)
所以(a^2+(b-2)^2)/(a-b)=2a=-2(b-2)
解之得a=0,b=2或a=2,b=0
所以切点A(0,0),k=f'(0)=0,切线为y=0
或切点A(2,4),k=f'(2)=4,切线为y-4=4(x-2)即y=4x-4
所以与这两曲线均相切的直线方程为y=0,或y=4x-4
设与y=x^2,y=-(x-2)^2这两曲线均相切的直线方程为y=kx+b
则x^2=kx+b,-(x-2)^2=kx+b
即x^2-kx-b=0,x^2+(k-4)x+(b+4)=0均有两个相等的实数根
所以△1=k^2+4b=0 ,且△2=(k-4)^2-4(b+4)=0
即k^2+4b=0,且k^2-8k-4b=0
所以2k^2-8k=0
2k(k-4)=0
所以k=0或k=4
所以k=0时,b=0 或k=4,时b=-4
所以与这两曲线均相切的直线方程为y=0,或y=4x-4
高中方法:
设f(x)=x^2, g(x)=-(x-2)^2
f'(x)=2x, g'(x)=-2x+4
设两切点为A(a,a^2), B[b,-(b-2)^2]
则AB的斜率等于两个切点的导数,
即kAB=f'(a)=g'(b)
所以(a^2+(b-2)^2)/(a-b)=2a=-2(b-2)
解之得a=0,b=2或a=2,b=0
所以切点A(0,0),k=f'(0)=0,切线为y=0
或切点A(2,4),k=f'(2)=4,切线为y-4=4(x-2)即y=4x-4
所以与这两曲线均相切的直线方程为y=0,或y=4x-4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询