
设正项级数∞n=1an收敛,证明级数∞n=1nanan+1…a2n?1收敛
1个回答
展开全部
利用几何算术平均值不等式可得,
nanan+1…a2n?1=n1n(n+1)…(2n?1)?nnan(n+1)an+1…(2n?1)a2n?1
≤1nn(n+1)…(2n?1)?nan+(n+1)an+1+…+(2n?1)a2n?1n
≤1n?nan+(n+1)an+1+…+(2n?1)a2n?1n
≤2n(2n?1)n2?a1+2a2+…+(2n?1)a2n?12n(2n?1)
≤4a1+2a2+…+(2n?1)a2n?12n(2n?1).
令bn=a1+2a2+…+nan,
由于∞
n=1an收敛,故有∞
n=1bnn(n+1)收敛,
从而∞
n=1b2n?1(2n?1)(2n)收敛,
故∞
n=1nanan+1…a2n?1收敛.
nanan+1…a2n?1=n1n(n+1)…(2n?1)?nnan(n+1)an+1…(2n?1)a2n?1
≤1nn(n+1)…(2n?1)?nan+(n+1)an+1+…+(2n?1)a2n?1n
≤1n?nan+(n+1)an+1+…+(2n?1)a2n?1n
≤2n(2n?1)n2?a1+2a2+…+(2n?1)a2n?12n(2n?1)
≤4a1+2a2+…+(2n?1)a2n?12n(2n?1).
令bn=a1+2a2+…+nan,
由于∞
n=1an收敛,故有∞
n=1bnn(n+1)收敛,
从而∞
n=1b2n?1(2n?1)(2n)收敛,
故∞
n=1nanan+1…a2n?1收敛.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询