已知数学期望和方差的正态分布,求概率
数学期望为1,方差为2,求的是取值在0~4的概率。记得有一个表可以查,现在想知道在知道期望和方差的情况下,怎么求相关概率?...
数学期望为1,方差为2,求的是取值在0~4的概率。记得有一个表可以查,现在想知道在知道期望和方差的情况下,怎么求相关概率?
展开
展开全部
不用二重积分的,可以有简单的办法的。
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下。
于是:
∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t。。。。。。(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了。
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
(2)方差
过程和求均值是差不多的,我就稍微略写一点了。
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证。
设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]
其实就是均值是u,方差是t^2,百度不太好打公式,你将就看一下。
于是:
∫e^[-(x-u)^2/2(t^2)]dx=(√2π)t。。。。。。(*)
积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了。
(1)求均值
对(*)式两边对u求导:
∫{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0
约去常数,再两边同乘以1/(√2π)t得:
∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0
把(u-x)拆开,再移项:
∫x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx
也就是
∫x*f(x)dx=u*1=u
这样就正好凑出了均值的定义式,证明了均值就是u。
(2)方差
过程和求均值是差不多的,我就稍微略写一点了。
对(*)式两边对t求导:
∫[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π
移项:
∫[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2
也就是
∫(x-u)^2*f(x)dx=t^2
正好凑出了方差的定义式,从而结论得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询