二重积分xdydz
求2xdydz+ydzdx+zdxdy的二重积分,其中曲线方程为z=x^2+y^2(0<=z<=1)的下侧...
求2xdydz+ydzdx+zdxdy的二重积分,其中曲线方程为z=x^2+y^2(0<=z<=1)的下侧
展开
1个回答
展开全部
这个不是二重积分,是第二类曲面积分,用高斯公式
补平面,z=1,x^2+y^2≤1,取上侧
这样两曲面合并为一个封闭曲面
∫∫ 2xdydz+ydzdx+zdxdy
=∫∫∫ (2+1+1)dxdydz
=4∫∫∫1dxdydz
下面用柱坐标
=4∫∫∫rdzdrdθ
=4∫[0→2π]dθ∫[0→1]rdr∫[r²→1]dz
=8π∫[0→1]r(1-r²)dr
=8π[(1/2)r^2-(1/4)r^4] |[0→1]
=2π
下面计算所补平面上的积分
∫∫ 2xdydz+ydzdx+zdxdy
=∫∫ 1 dxdy 积分区域是:x^2+y^2≤1
=π
因此本题结果是:原式=2π-π=π
补平面,z=1,x^2+y^2≤1,取上侧
这样两曲面合并为一个封闭曲面
∫∫ 2xdydz+ydzdx+zdxdy
=∫∫∫ (2+1+1)dxdydz
=4∫∫∫1dxdydz
下面用柱坐标
=4∫∫∫rdzdrdθ
=4∫[0→2π]dθ∫[0→1]rdr∫[r²→1]dz
=8π∫[0→1]r(1-r²)dr
=8π[(1/2)r^2-(1/4)r^4] |[0→1]
=2π
下面计算所补平面上的积分
∫∫ 2xdydz+ydzdx+zdxdy
=∫∫ 1 dxdy 积分区域是:x^2+y^2≤1
=π
因此本题结果是:原式=2π-π=π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询