[f(x)]'和f'(x)的区别
两者的定义不同
f(x) 是函数; f(x)dx 是微分。
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
微分定义
设函数y = F(x)在x的邻域内有定义,x及x + Δx在此区间内。
如果函数的增量Δy = F(x + Δx) - F(x)可表示为 Δy = AΔx + o(Δx),而o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且AΔx称作函数在点x相应于因变量增量Δy的微分,记作dy。
通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = F(x)的微分又可记作dy = f(x)dx。其中F'(x)=f(x)。
扩展资料:
函数几何意义
函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系不止且不止一个;最后,要重点理解函数的三要素。
函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。
微分几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲 线在点M的切线对应Δx在纵坐标上的增量。
当|Δx|很小时,|Δy-dy|比|Δx|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代替曲线段。
参考资料来源:百度百科-函数
参考资料来源:百度百科-微分