设函数f(x)=ax-(a+1)ln(x+1),其中a>0

设函数f(x)=ax-(a+1)ln(x+1),其中a>0(3)设f(x)的最小值为g(a),证明不等式:-1/a<g(a)<0... 设函数f(x)=ax-(a+1)ln(x+1),其中a>0(3)设f(x)的最小值为g(a),证明不等式:-1/a<g(a)<0 展开
 我来答
关名勾幼萱
2020-02-15 · TA获得超过3844个赞
知道大有可为答主
回答量:3064
采纳率:24%
帮助的人:438万
展开全部
令g(x)=(x+1)ln(x+1)-ax,
于是不等式f(x)≥ax成立即为g(x)≥g(0)成立.
对函数g(x)求导数:g′(x)=ln(x+1)+1-a
令g′(x)=0,解得x=e^(a-1)-1,
当x>e^(a-1)-1时,g′(x)>0,g(x)为增函数,
当-1<x<e^(a-1)-1,g′(x)<0,g(x)为减函数,
所以要对所有x≥0都有g(x)≥g(0)充要条件为e^(a-1)-1≤0.
由此得a≤1,即a的取值范围是(-∞,1].
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式