如图,这个微分方程怎么求,详细过程谢谢
展开全部
p(u)=2/(1-u^2)
∫p(u)du
=∫2/(1-u^2) du
=∫[1/(1-u) +1/(1+u)] du
=ln|(1+u)/(1-u)| +C
e^[∫p(u)du] =(1+u)/(1-u)
//
(1-u^2)f'(u) +2f(u) = u
f'(u) +[2/(1-u^2) ]f(u) = u/(1-u^2)
两边乘以(1+u)/(1-u)
[(1+u)/(1-u)] .[f'(u) +[2/(1-u^2) ]f(u)] =[(1+u)/(1-u)].[ u/(1-u^2)]
d/du { (1+u)/(1-u)] .f(u) } =u/(1-u)^2
[(1+u)/(1-u)] .f(u) = ∫u/(1-u)^2 du
=-∫u d[1/(1-u)]
=-u/(1-u) +∫[1/(1-u)] du
=-u/(1-u) -ln|1-u| +C
f(u) =[(1-u)/(1+u)] . [-u/(1-u) -ln|1-u| +C]
∫p(u)du
=∫2/(1-u^2) du
=∫[1/(1-u) +1/(1+u)] du
=ln|(1+u)/(1-u)| +C
e^[∫p(u)du] =(1+u)/(1-u)
//
(1-u^2)f'(u) +2f(u) = u
f'(u) +[2/(1-u^2) ]f(u) = u/(1-u^2)
两边乘以(1+u)/(1-u)
[(1+u)/(1-u)] .[f'(u) +[2/(1-u^2) ]f(u)] =[(1+u)/(1-u)].[ u/(1-u^2)]
d/du { (1+u)/(1-u)] .f(u) } =u/(1-u)^2
[(1+u)/(1-u)] .f(u) = ∫u/(1-u)^2 du
=-∫u d[1/(1-u)]
=-u/(1-u) +∫[1/(1-u)] du
=-u/(1-u) -ln|1-u| +C
f(u) =[(1-u)/(1+u)] . [-u/(1-u) -ln|1-u| +C]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询