30度60度90度勾股定理是什么?
勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
定理用途:已知直角三角形两边求解第三边,或者已知三角形的三边长度,证明该三角形为直角三角形或用来证明该三角形内两边垂直。利用勾股定理求线段长度这是勾股定理的最基本运用。
勾股定理的意义
勾股定理是欧氏几何中平面单形——三角形边角关系的重要表现形式,虽然是在直角三角形的情形,但基本不失一般性,因此,欧几里得在《原本》中的第一卷,就以勾股定理为核心展开,一方面奠定欧氏公理体系的架构,另一方面紧紧围绕勾股定理的证明,揭示了面积的自然基础。
第一卷共48个命题,以勾股定理(第47个命题)及其逆定理(第48个命题)结束,并在后续第二卷中,自然将勾股定理推广大任意三角形的情形,给出了余弦定理的完整形式。
勾股定理是人们认识宇宙中形的规律的自然起点,无论在东西方文明起源过程中,都有着很多动人的故事。中国古代数学著作《九章算术》的第九章即为勾股术。
并且整体上呈现出明确的算法和应用性特点,这与欧几里得《原本》第一章的毕达哥拉斯定理(勾股弦定理)及其显现出来的推理和纯理性特点恰好形成煜煜生辉的两极,令人感慨。