常用泰勒公式展开是怎么样的?
展开全部
泰勒公式在x=a处展开为
f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……
设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①
令x=a则a0=f(a)
将①式两边求一阶导数,得
f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②
令x=a,得a1=f'(a)
对②两边求导,得
f"(x)=2!a2+a3(x-a)+……
令x=a,得a2=f''(a)/2!
继续下去可得an=f(n)(a)/n!
所以f(x)在x=a处的泰勒公式为:
f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……
泰勒公式展开在物理学应用
物理学上的一切原理定理公式都是用泰勒展开做近似得到的简谐振动对应的势能具有x^2的形式,并且能在数学上精确求解。为了处理一般的情况,物理学首先关注平衡状态,可以认为是“不动”的情况。为了达到“动”的效果,会给平衡态加上一个微扰,使物体振动。
在这种情况下,势场往往是复杂的,因此振动的具体形式很难求解。这时,Taylor展开就开始发挥威力了!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询