请问高数这两道极限题目怎么做,求全过程,谢谢大佬们了
a>0
lim(x->+无穷) x^2.[a^(1/x) - a^(1/(x+1)) ]
y=1/x
lim(y->0+) (1/y)^2.[a^y - a^(1/(1/y +1)) ]
=lim(y->0+) (1/y)^2.[a^y - a^(y/(1 +y)) ]
=lim(y->0+) (1/y)^2.[a^y - a^(1 - 1/(1+y)) ]
=lim(y->0+) (1/y)^2.[a^y - a^(1 - (1+y)^(-1) ) ]
泰勒公式 (1+y)^(-1) = 1- y +(1/2)y^2 +o(y^2)
=lim(y->0+) (1/y)^2.[a^y - a^(1 - (1-y +(1/2)y^2 +o(y^2) ) ]
=lim(y->0+) (1/y)^2.[a^y - a^(y -(1/2)y^2 +o(y^2) ) ]
共同因子 a^y
=lim(y->0+) (1/y)^2. a^y { 1- a^[(1/2)y^2] }
lim(y->0+) a^y =1
=lim(y->0+) (1/y)^2. { 1- a^[(1/2)y^2] }
等价无穷小
=lim(y->0+) (1/y)^2. { - (lna) (1/2)y^2 }
= -(1/2) lna
(3)
lim(x->+无穷) [ sin√(x+1) -sin√x ]
=lim(x->+无穷) 2cos{[√(x+1)+√x]/2 } . sin{[√(x+1)-√x]/2 }
有理化分子
=lim(x->+无穷) 2cos{[√(x+1)+√x]/2 } . sin{(1/2) 【1/[√(x+1)+√x]】 }
|cos{[√(x+1)+√x]/2 } | ≤1 and lim(x->+无穷) sin{(1/2) 【1/[√(x+1)+√x]】 }=0
=0