微分方程解法总结是什么?

 我来答
生活小达人164I
高能答主

2022-03-23 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:32.8万
展开全部

微分方程解法总结如下:

一、g(y)dy=f(x)dx形式:

可分离变量的微分方程,直接分离然后积分。

二、可化为dy/dx=f(y/x)的齐次方程

换元,分离变量。

三、一阶线性微分方程

dy/dx+P(x)y=Q(x)。

先求其对应的一阶齐次方程,然后用常数变易法带换u(x)。

得到通解y=e^-∫P(x)dx{∫Q(x)[e^∫P(x)dx]dx+C}。

四、伯努利方程dy/dx+P(x)y=Q(x)y^n:

两边同除y^n引进z=y^(n-1)配为线形一阶非齐次方程。

然后代如通解,最后代入z=y^(n-1)。

五、全微分方程P(x,y)dx+Q(x,y)dy=0:

有解的充要条件为ap/ay=aQ/ax。

此时通解为u(x,y)=∫(xo,x)P(x,y)dx+∫(yo,y)Q(x,y)dy=C。

有的方程可通过乘积分因子得到全微分方程的形式。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式