特征值和特征向量是数学概念。
若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。
位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。
注意:
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式。
第二步:求出特征方程的全部根,即为的全部特征值。
第三步:对于的每一个特征值,求出齐次线性方程组。
的一个基础解系,则的属于特征值的全部特征向量是,(其中是不全为零的任意实数)。