设函数f(x)=|1gx|,若0<a<b,且f(a)>f(b),证明:ab<1.

 我来答
科创17
2022-06-30 · TA获得超过5914个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:176万
展开全部
证明:由已知函数f(x)=|1gx|= lgx (1≤x) -lgx (0<x<1) (2分)
∵0<a<b,f(a)>f(b),
∴a、b不能同时在区间[1,+)∞上,又由于0<a<b,故必有a∈(0,1);
(6分)
若b∈(0,1),显然有ab<1(8分)
若b∈[1,+∞),由f(a)-f(b)>0,
有-1ga-1gb>0,
故1gab<0,
∴ab<1(12分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式