时间序列分析
2024-01-02 · 百度认证:SPSSAU官方账号,优质教育领域创作者
ARIMA模型(移动平均自回归模型),其是最常见的时间序列预测分析方法。利用历史数据可以预测前来的情况。ARIMA模型可拆分为3项,分别是AR模型,I即差分,和MA模型。SPSSAU智能地找出最佳的AR模型,I即差分值和MA模型,并且最终给出最佳模型预测结果,SPSSAU智能找出最佳模型的原理在于利用AIC值最小这一规则,遍历出各种可能的模型组合进行模型构建,并且结合AIC最小这一规则,最终得到最佳模型。
当然,研究人员也可以自行设置AR模型,差分阶数和MA模型,即分别设置自回归阶数p,差分阶数d值和移动平均阶数q,然后进行模型构建。至于自回归阶数p,差分阶数d值和移动平均阶数q值应该设置多少合适,建议研究人员分别使用偏(自)相关图进行分析(SPSSAU也智能提供p值或q值建议),以及使用ADF检验分析得出合适的差分阶数d值(SPSSAU也智能提供最佳差分阶数d值建议)。
ARIMA模型可拆分为3项,分别是AR模型,I即差分,和MA模型。SPSSAU智能地找出最佳的AR模型,I即差分值和MA模型。当然,研究人员如果自行设置AR模型,差分阶数和MA模型,即分别设置自回归阶数p,差分阶数d值和移动平均阶数q,此时SPSSAU则按照研究人员的设置进行模型构建。建议用户直接使用SPSSAU的智能分析即可。
spssau操作如下:
2020-10-29 广告
与信号分析类似,时间序列分析的方法也有时间域和频率域的方法;有单变量和多变量方法;有线性方法和非线性方法;连续序列和离散序列。
一般时间序列可以依据变化特征分解为四个部分,即趋势(trend)、季节性(seasonal)、周期性(cyclical)和不规则(irregular)部分。
构建时间序列预测模型的一种重要是方法使用随机过程理论。这与地质统计的分析方法是相同的,只是分析对象不同:时间序列为时间点上的数据而地质统计为空间点上的数据。这里认为时间序列上的数据点为随机变量,整个时间序列为一个随机函数。描述不同时间点上的数据之间的关系,同样要使用自协方差、自相关函数。同时二者同样实在稳态假设之下进行分析,应用中也需要对于数据进行去除趋势等处理使之满足稳态条件。时间序列分析中的自回归模型(AR)相当于地质统计中的简单克里金。