f(x)=xlnx,在区间(1,e)满足拉格朗日定理 求解析

 我来答
京斯年0GZ
2022-05-20 · TA获得超过6211个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:74.7万
展开全部
f (x)=lnx+1
∵f(x)=xlnx在闭区间【1,e】上连续
开区间(1,e)上可导
所以 f(x)=xlnx,在区间(1,e)满足拉格朗日定理
故在(1,e)内至少有一点a(1<a<e),使得
f(e)-f(1)=f '(a)(e-1)
即e=(lna+1)(e-1)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式