奇函数和偶函数怎么判断
1个回答
展开全部
1、看图像:奇函数关于原点对称;偶函数关于Y轴对称; 即奇又偶就是即关于原点对称又关于Y轴对称,这种只有常数函数且为0的函数; 非奇非偶就是即不关于原点对称又不关于y轴对称的函数。
2、看其能否满足一定的条件奇函数,对任意定义域内的x都满足f(-x)=-f(x);偶函数,对任意定义域内的x都满足f(-x)=f(x); 即奇又偶,对任意定义域内的x都满足f(-x)=f(x)且满足f(-x)=-f(x),这只有常数为0的函数; 非奇非偶,对任意定义域内的x不,f(-x)=f(x)和f(-x)=-f(x),都不成立。
3、奇函数一定满足f(0)=0(因为F(0)这个表达式表示0在定义域范围内,F(0)就必须为0)所以不一定奇函数有f(0),但有F(0)时F(0)必须等于0,不一定有f(0)=0,推出奇函数,此时函数不一定为奇函数,例f(x)=x^2。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询