用泰勒公式求极限(e^x^3-1-x^3)/(tanx-sinx)^2 其中x-->0求详细过
展开全部
∵e^x=1+x+x^2/2+o(x^2)∴e^(x^3)=1+x^3+x^6/2+o(x^6)lim[x-->0][e^(x^3)-1-x^3]/(tanx-sinx)^2=lim[x->0][1+x^3+x^6/2+o(x^6)-1-x^3]/[sinx(1/cosx-1)]^2=lim[x->0](cosx)^2[x^6/2+o(x^6)]/[(sinx)^2(1-cosx)^2] ...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询