1/1*4+1/2*5+1/3*6+……+1/n*(n+3) 证明1/1*3+1/2*4+1/3*5+……+1/n(n+2)=3/4-(2n+3)/2(n+1)(n+2)

 我来答
户如乐9318
2022-07-02 · TA获得超过6686个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:143万
展开全部
1/n(n+2)= 1/2*[1/n -1/(n+2)]
1/1*3+1/2*4+1/3*5+……+1/n(n+2)
=1/2*[ 1/1-1/3+1/2-1/4+1/3-1/5+1/4-1/6+...+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/(n)-1/(n+2) ]
=1/2*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/3+1/4+1/5+...+1/n+1/(n+1)+1/(n+2) }
=1/2*{ [ 1/1+1/2]-[1/(n+1)+1/(n+2) }
=3/4-(2n+3)/2(n+1)(n+2)
1/n(n+3)= 1/3*[1/n -1/(n+3)]
1/1*4+1/2*5+1/3*6+……+1/n*(n+3) 【同样处理】
=1/3*{ [ 1/1+1/2+1/3+...+1/(n-1)+1/n]-[1/4+1/5+...+1/n+1/(n+1)+1/(n+2)+1/(n+3) }
=1/3*{ [ 1/1+1/2+1/3]-[1/(n+1)+1/(n+2)+1/(n+3) }
= 11/18-[1/(n+1)+1/(n+2)+1/(n+3)]/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式