判断函数y=2^x-1/2^x+1 的奇偶性.
1个回答
展开全部
y = (2^x - 1) / (2^x + 1)
即:
f(x) = (2^x - 1) / (2^x + 1)
所以:
f(-x) = [2^(-x) - 1] / [2^(-x) + 1]
= [1/(2^x) - 1] / [1/(2^x) + 1]【分子分母同时乘以(2^x)】
= [1 - (2^x)] / [1 + (2^x)]
= - (2^x - 1) / (2^x + 1)
= - f(x)
即
f(-x) = - f(x)
所以函数为奇函数.
即:
f(x) = (2^x - 1) / (2^x + 1)
所以:
f(-x) = [2^(-x) - 1] / [2^(-x) + 1]
= [1/(2^x) - 1] / [1/(2^x) + 1]【分子分母同时乘以(2^x)】
= [1 - (2^x)] / [1 + (2^x)]
= - (2^x - 1) / (2^x + 1)
= - f(x)
即
f(-x) = - f(x)
所以函数为奇函数.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询