设fx=1/2*ax^2-2ax+lnx ,已知函数fx有两个极值点x1x2 且x1*x2>1/2. 求a的取值范围.

 我来答
机器1718
2022-06-27 · TA获得超过6848个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:162万
展开全部
fx=1/2*ax^2-2ax+lnx 有两个极值点x1x2 ,
则fx'= ax-2a+1/x=0有x1x2 两个零点.由函数定义域知x>0,所以,ax^2-2ax+1=0有x1x2 两个零点.
所以,(2a)^2-4a>0,a>1
又x1*x2=1/a,所以1/a>1/2,所以a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式