函数求极限问题
如图我这样做对吗,我感觉我那个等价无穷小不对,但是答案划线部分哪里为什么可以洛必达,不是还没有满足条件吗...
如图我这样做对吗,我感觉我那个等价无穷小不对,但是答案划线部分哪里为什么可以洛必达,不是还没有满足条件吗
展开
3个回答
展开全部
x->0
(1+x)^(2/x)
=e^[2ln(1+x)/x]
=e^【2[x -(1/2)x^2 +o(x^2) ]/x】
=e^[2 -x +o(x) ]
//
lim(x->0) [(1+x)^(2/x) -e^2]/x
=lim(x->0) [e^(2-x) -e^2]/x
=e^2.lim(x->0) [e^(-x) -1]/x
=e^2.lim(x->0) -x/x
=-e^2
(1+x)^(2/x)
=e^[2ln(1+x)/x]
=e^【2[x -(1/2)x^2 +o(x^2) ]/x】
=e^[2 -x +o(x) ]
//
lim(x->0) [(1+x)^(2/x) -e^2]/x
=lim(x->0) [e^(2-x) -e^2]/x
=e^2.lim(x->0) [e^(-x) -1]/x
=e^2.lim(x->0) -x/x
=-e^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
讲真,我觉得你的方法还更方便更有技巧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
当x→0时,根据重要极限知:lim<x→0>(1+x)^(2/x)=e²
所以,分子→0,此时满足0/0型,可以用罗必塔法则
第一个等号只不过是将(1+x)^(2/x)转换为对数的形式,便于使用罗必塔法则时求导
即:令(1+x)^(2/x)=t
那么,lnt=[ln(1+x)^(2/x)]=(2/x)·ln(1+x)
所以,t=e^[(2/x)·ln(1+x)]
……
接下来就是罗必塔求导的问题了。。。
所以,分子→0,此时满足0/0型,可以用罗必塔法则
第一个等号只不过是将(1+x)^(2/x)转换为对数的形式,便于使用罗必塔法则时求导
即:令(1+x)^(2/x)=t
那么,lnt=[ln(1+x)^(2/x)]=(2/x)·ln(1+x)
所以,t=e^[(2/x)·ln(1+x)]
……
接下来就是罗必塔求导的问题了。。。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询