2个回答
展开全部
e^(xy) + ln[y/(x+1)] = 0, x = 0 时,1+lny = 0, y = 1/e.
两边对 x 求导, 注意 y 是 x 的函数, 得
e^(xy)(y+xy') + [(x+1)/y][(x+1)y'-y]/(x+1)^2 = 0
(y+xy')e^(xy) + [(x+1)y'-y]/[y(x+1)] = 0
x = 0, y = 1/e 代入, 得
1/e + [y'(0)-1/e]/(1/e) = 0
1/e + ey'(0)-1 = 0, y'(0) = (e-1)/e^2
两边对 x 求导, 注意 y 是 x 的函数, 得
e^(xy)(y+xy') + [(x+1)/y][(x+1)y'-y]/(x+1)^2 = 0
(y+xy')e^(xy) + [(x+1)y'-y]/[y(x+1)] = 0
x = 0, y = 1/e 代入, 得
1/e + [y'(0)-1/e]/(1/e) = 0
1/e + ey'(0)-1 = 0, y'(0) = (e-1)/e^2
展开全部
e^(xy) + ln[y/(x+1)]=0
带入 x=0
e^0 + ln[y(0)]=0
lny(0) = -1
y(0) = e^(-1)
//
e^(xy) + ln[y/(x+1)]=0
d/dx { e^(xy) + ln[y/(x+1)] }=0
(xy'+ y).e^(xy) + [(x+1)/y]. { [ (x+1)y' - y ]/(x+1)^2 } =0
带入 x=0
(0+ y(0)).e^0 + [1/y(0)]. [ y'(0) - y(0) ] =0
y(0)+ [1/y(0)].[ y'(0) - y(0) ] =0
带入 y(0) =e^(-1)
e^(-1) + e.[ y'(0) - e^(-1) ] =0
e^(-1) + e.y'(0) - 1 =0
e.y'(0) = 1-e^(-1)
y'(0) = (e-1)/e^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询