已知集合A={1,2,3,4······n},求其所有子集的元素之和 要过程

 我来答
天然槑17
2022-07-03 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6571
采纳率:100%
帮助的人:38.2万
展开全部
A的子集一共有2^n个,
在这2^n个子集中,我们来考察各个元素出现的次数,因为每个元素地位均等,所以我们只要考察一个就行了,其他类似;
以元素1为例:
没有出现1这个元素的子集个数为2^(n-1)个,原因如下:
没有元素1的子集,即可把这些集合看做集合B={2,3,4,5.,n}的子集,根据公式,有2^(n-1)个;
在A的所有子集中元素1出现的次数是2^n-2^(n-1)=2^(n-1);
类似的,2到n每一个元素出现的次数都是2^(n-1)
而1+2+3+...+n=n(n+1)/2
所以,所求的所有子集的元素之和就=[2^(n-1)]*[n(n+1)/2]
化简得:n(n+1)*2^(n-2)
如果不懂,请Hi我,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式