变上限积分求导
1个回答
展开全部
变上限积分求导如下:
当积分上限为被积函数的自变量时,变限积分在某一点的导数等于被积分函数在这一点的值,就是说积分这一点的增量为被积分函数在这一点的值乘以自变量增量区间大小,求导求出来的就是这一点的导数即为被积分函数在这一点的值。
自变量增量区间为某个函数时,此函数也需要进行求导方可平衡。
变上限积分求导公式:即∫f(t)dt(积分限a到x),根据映射的观点,每给一个x就积分出一个实数,因此这是关于x的一元函数,记为g(x)=∫f(t)dt(积分限a到x),注意积分变量用什么符号都不影响积分值,改用t是为了不与上限x混淆。
现在用导数定义求g'(x),根据定义,g'(x)=lim【∫f(t)dt-∫f(t)dt】/h(h趋于0,积分限前者为a到x+h,后者为a到x)=lim∫f(t)dt/h(积分限x到x+h,根据的是积分的区间可加性)。
根据积分中值定理,存在ξ属于(x,x+h),使得∫f(t)dt/h=f(ξ)h,又因为h趋于0时ξ是趋于x的,故极限=limf(ξ)h/h=f(x),至此证明了g'(x)=f(x)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询