已知参数方程x=1-t^3,y=t-t^3,求dy/dx,d^2/dx^2?
1个回答
展开全部
dy/dx=(dy/dt)/(dt/dx)
=(1-3t^2)/(-3t^2)
=1-1/(3t^2),1,dy/dx=(dy/dt)/(dx/dt)=(1-3t^2)/(-3t^2)=1-[1/(-3t^2)] d^2y/dx^2=[d(dy/dx)]/(dx/dt)=[2/(3t^3)]/(-3t^2)=(-2)/(9t^5),2,dy/dx=(dy/dt)X(dt/dx),dy/dt=1-3t^2,dt/dx=1/(dx/dt)=1/(-3t^2),所以dy/dx=(1-3t^2)/(-3t^2)
d^2y/dx^2=(d(dy/dx)/dt)/(dt/dx)=1/(-t^5)
望采纳,1,
=(1-3t^2)/(-3t^2)
=1-1/(3t^2),1,dy/dx=(dy/dt)/(dx/dt)=(1-3t^2)/(-3t^2)=1-[1/(-3t^2)] d^2y/dx^2=[d(dy/dx)]/(dx/dt)=[2/(3t^3)]/(-3t^2)=(-2)/(9t^5),2,dy/dx=(dy/dt)X(dt/dx),dy/dt=1-3t^2,dt/dx=1/(dx/dt)=1/(-3t^2),所以dy/dx=(1-3t^2)/(-3t^2)
d^2y/dx^2=(d(dy/dx)/dt)/(dt/dx)=1/(-t^5)
望采纳,1,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询