求极限lim[(x-4)/(x+3)]^x x趋向无穷大?
1个回答
展开全部
lim[(x-4)/(x+3)]^x
=lim[1-7/(x+3)]^x
={lim[1-7/(x+3)]^[-(x+3)/7]}^-7*lim[1-7/(x+3)]^-3
=e^-7*1
=e^-7,2,得1,2,原式=[1-7/(x+3)]^x
=[1-7/蠢激纳(x+3)]^[(x+3)/7*7x/(x+3)]
=e^[7x/(x+3)]
=e^7
我先铅塌回答的~~带没
如有疑问请在线交谈~~,2,
=lim[1-7/(x+3)]^x
={lim[1-7/(x+3)]^[-(x+3)/7]}^-7*lim[1-7/(x+3)]^-3
=e^-7*1
=e^-7,2,得1,2,原式=[1-7/(x+3)]^x
=[1-7/蠢激纳(x+3)]^[(x+3)/7*7x/(x+3)]
=e^[7x/(x+3)]
=e^7
我先铅塌回答的~~带没
如有疑问请在线交谈~~,2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询