(1)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.

 我来答
舒适还明净的海鸥i
2022-08-28 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68万
展开全部
分析:(1)①BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;然后在△ABD和△CDF中,由三角形内角和定理可以求得∠CFD=90°,即BD⊥CF; ②BD=CE,BD⊥CE.根据全等三角形的判定定理SAS推知△ABD≌△ACE,然后由全等三角形的对应边相等证得BD=CE、对应角相等∠ABF=∠ECA;作辅助线(延长BD交AC于F,交CE于H)BH构建对顶角∠ABF=∠HCF,再根据三角形内角和定理证得∠BHC=90°; (2)根据结论①、②的证明过程知,∠BAC=∠DFC(或∠FHC=90°)时,该结论成立了,所以本条件中的∠BAC=∠DAE≠90°不合适. (1)图1做BF⊥EC于F 图2做BH⊥EC于H ①结论:BD=CE,BD⊥CE; ②结论:BD=CE,BD⊥CE…1分 理由如下:∵∠BAC=∠DAE=90° ∴∠BAD-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE…1分 在△ABD与△ACE中, ∵AB=AC∠BAD=∠CAEAD=AE ∴△ABD≌△ACE…2分 ∴BD=CE…1分 延长BD交AC于F,交CE于H. 在△ABF与△HCF中, ∵∠ABF=∠HCF,∠AFB=∠HFC ∴∠CHF=∠BAF=90° ∴BD⊥CE…3分 (2)结论:乙.AB:AC=AD:AE,∠BAC=∠DAE=90°…2分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式