已知P是等边三角形ABC外一点,且角ABP+角ACP等于180度,求证:PB+PC=PA
1个回答
展开全部
证明:在BP的延长线上取点D,使PC=PD,连接CD∵等边△ABC∴AC=BC,∠BAC=∠ACB=60∵∠BAC+∠BPC+∠ABP+∠ACP=360,∠ABP+∠ACP=180∴∠APC=360-180-60=120∴∠CPD=180-∠BPC=60∵PC=PD∴等边△PCD∴PC=DC,∠PCD=60∴∠ACB=∠PCD∵∠ACP=∠ACB+∠BCP,∠BCD=∠PCD+∠BCP∴∠ACP=∠BCD∴△ACP≌△BCD (SAS)∴BD=PA∵PB+PD=BD∴PB+PC=BD∴PB+PC=PA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
丰慈
2024-09-18 广告
2024-09-18 广告
同步带和同步带轮的配合使用可以有效地传递动力,提高传动的效率和精度。以下是一些选购同步带和同步带轮的注意事项:1. 确定所需的同步带类型和尺寸。同步带有多种系列和尺寸,例如百万转矩系列、台型齿系列、短齿同步带等等。在选择同步带时,需要考虑传...
点击进入详情页
本回答由丰慈提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询