三年级不规则图形周长和面积
不规则图形的周长和面积问题,是三年级的一个重难点。
周长是围成这个封闭图形,外围一圈线段的长度和。面积是这个图形所占面的大小。所以求周长就是求所有线段的长度和,求面积就是看这个图形都有哪些面组成,把不规则图形分割成规则图形,然后求这些规则图形的面积和即可。
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
请看下面的例题。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
分析:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.
分析:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.
解:
S△ABE=S△ADF=S四边形AECF=12
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,
∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。
分析:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.
广告 您可能关注的内容 |