设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

 我来答
会哭的礼物17
2022-07-22 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6287
采纳率:100%
帮助的人:35.3万
展开全部
因为 A^3-A^2+2A-E=0
所以 A(A^2-A+2E) = E.
所以A可逆,其逆为 A^2-A+2E.
再由 A^3-A^2+2A-E=0
得 (A-E)(-A^2-2E) = E
所以 A-E 可逆,且其逆为 -A^2-2E
有问题请消息我或追问
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式