求函数y=(1+sinx)(1+cosx)的值域
展开全部
分类: 教育/学业/考试 >> 学习帮助
问题描述:
这是一道高一三角函数的题目
解析:
y=(1+sinx)(1+cosx)=1+(sinx+cosx)+sinx*cosx
令(sinx+cosx)=t则t属于[-根号2,根号2]而sinx*cosx=1/2(t^2-1)
所以原函数y=1/2(t^2-1)+1+t
函数变换为关于t的二次函数,对称轴是-1,开口向下,变量t属于[-根号2,根号2]
所以t=-1时函数最小,t=根号2时函数最大,即函数的值域[0,(3/2)+根号2]
问题描述:
这是一道高一三角函数的题目
解析:
y=(1+sinx)(1+cosx)=1+(sinx+cosx)+sinx*cosx
令(sinx+cosx)=t则t属于[-根号2,根号2]而sinx*cosx=1/2(t^2-1)
所以原函数y=1/2(t^2-1)+1+t
函数变换为关于t的二次函数,对称轴是-1,开口向下,变量t属于[-根号2,根号2]
所以t=-1时函数最小,t=根号2时函数最大,即函数的值域[0,(3/2)+根号2]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询