设函数fx=根号3分之2cosx+二分之1sinx+1 求函数fx的值域和函数的单调递增区间
1个回答
展开全部
f(x) = √3/2cosx+1/2sinx+1
= 1/2sinx+√3/2cosx+1
= sinxccosπ/3cosxsinπ/3+1
=sin(x+π/3)+1
sin(x+π/3)∈[-1,1]
sin(x+π/3)+1∈[0,2],即值域:[0,2}
x+π/3∈(2kπ-π/2,2kπ+π/2)时单调增
∴单调递增区间:x∈[2kπ-5π/6,2kπ+π/6],其中k∈Z
= 1/2sinx+√3/2cosx+1
= sinxccosπ/3cosxsinπ/3+1
=sin(x+π/3)+1
sin(x+π/3)∈[-1,1]
sin(x+π/3)+1∈[0,2],即值域:[0,2}
x+π/3∈(2kπ-π/2,2kπ+π/2)时单调增
∴单调递增区间:x∈[2kπ-5π/6,2kπ+π/6],其中k∈Z
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询